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Abstract

This paper presents a method for describing and recog-
nising local structure in 3D images. The method extends
proven techniques for 2D object recognition in images. In
particular, we propose a 3D interest point detector that is
based on SURF, and a 3D descriptor that extends SIFT.
The method is applied to the problem of detecting repeated
structure in range images, and promising results are re-
ported.

1. Introduction

Image based object recognition is a long standing cen-
tral problem in computer vision. Recently, attention has
turned to the use of local feature descriptors that, given a
keypoint in an image, calculate a signature describing the
image about that point. Using local descriptors to describe
an object provides robustness to partial occlusion, and de-
pending on the design of the descriptor can provide robust-
ness to changes in illumination and viewpoint.

For example, the Scale Invariant Feature Transform
(SIFT) [4] has proven to be a very effective descriptor for
object recognition from images. SIFT calculates a signa-
ture that characterises the image in the neighbourhood of a
keypoint in a way that is robust to changes in global illu-
mination, object rotation and scale. The signature is based
on histograms of image grey-level gradients which are cal-
culated at several scales, and normalised with respect to a
locally dominant orientation.

The idea of this work is to build a local 3D feature de-
scriptor with comparable robustness to missing data and
changes in viewpoint. This was initially motivated by pre-
vious work of the authors [5] in image based modelling. In
this domain it is common to have a 3D data set—whether
captured from a range finder, or the output of structure and

motion estimation, or modelled manually—that is incom-
plete. Often it is the case that this 3D data will contain
repeated structure, some instances of which are captured or
modelled with higher fidelity than others. If such repeti-
tion can be recognised automatically, information from in-
stances that are well modelled can be propagated to those
that are poorly modelled, resulting in a more accurate over-
all model.

Local 3D feature descriptors have been investigated pre-
viously. For example, Frome et al. [2] define a shape context
for a 3D keypoint. The shape context is computed by count-
ing the number of 3D points lying in a neighbourhood of
the keypoint. These counts are partitioned into a histogram
based on their distance and direction from the keypoint.

In a similar vein, spin images [3] also divide the area
around a keypoint into a number of spatial bins and then
count the number of points in each bin. The difference is
that in spin images the bins are defined by height and radius;
i.e. the neighbourhood is cylindrical, which has advantages
over a spherical neighbourhood. Neither transform is in-
variant to scale, and, although they exhibit some robustness
to rotation (histograms are calculated relative to estimated
surface normal) they are sensitive to small changes in the
computed surface normal.

The success of local feature descriptors depends strongly
on the choice of keypoint locations. In 2D images, good
keypoints are those that can be well localised, such as corner
points where the intensity gradient is high in all directions.
Several techniques such as the Harris corner detector, and
more recently SURF [1], have been developed to identify
these points. In 3D images, we also require keypoints that
can be well localised, but in 3D this requires that the spatial
gradient of the surface about a keypoint be high in all three
directions.

This paper proposes a new 3D feature descriptor, called
ThrIFT, that extends the successful SIFT and SURF algo-
rithms to keypoint selection, identification and matching in
range data. It brings many of the advantages of these algo-
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rithms to bear on the problem of 3D structure recognition.
We show how this 3D keypoint detector and descriptor can
be combined to detect repeated 3D structure in range data
of building facades.

The remainder of this paper is organised as follows. Sec-
tion 2 describes our interest point detector. Section 3 de-
scribes our 3D descriptor. In section 4 we present empirical
results, and section 5 concludes the paper.

2. A 3D Interest Point Detector

The objective of an interest point detector is to repeat-
ably identify the same scene points under a range of image
transformations, such as a change in viewpoint or illumi-
nation. This requires that the interest points be located at
scene features that define an unambiguous location (corners
have this property but edges do not).

SIFT and SURF use the determinant of the Hessian
to measure the distinctiveness of candidate interest points.
This is successful because when the determinant of the Hes-
sian is large then both principal curvatures are large [4],
meaning that the point is well defined and likely to be re-
peatably detected under different viewing or lighting condi-
tions. Conversely, when the determinant of the Hessian is
small then at least one of the principal curvatures is small,
so localisation in this direction may vary under image trans-
formations.

In range data, interest points must be well localised in
all three dimensions if they are to be repeatably detected
at the same location. ThrIFT uses the 3D version of the
Hessian to select such interest points. We approximate a
density function f(x, y, z) by sampling regularly in space
throughout the data (explained in detail below). We then
construct a scale space over the density function, and search
for local maxima of the Hessian determinant.

2.1. The Density Map

In this work we consider range data to be a set of 3D
points:

X =
{
xi ∈ R3

}
We wish to approximate a density function f(x, y, z)

from this data. Let n(B) be the number of data points in
the region B ⊆ R3. We can approximate f in any such
region using ∫

B

f(x) dx = n(B)

We define equal-sized boxes B = {Bijk}(i,j,k)∈I⊂Z3

and space them regularly in each spatial dimension:

Bijk = {(x, y, z) ∈ R3 | iα ≤ x < (i + 1)α,

jβ ≤ y < (j + 1)β,

kγ ≤ z < (k + 1)γ}

We then construct f as a sum of delta functions:

f(x, y, z) =
∑

(i,j,k)∈I

D(i, j, k)δ(x−Xijk, y−Yijk, z−Zijk)

where (Xijk, Yijk, Zijk) = Bijk is centre of the box Bijk

and

D(i, j, k) =
n(Bijk)

argmax
(i,j,k)∈I

{
n(Bijk)

}
is the normalised density map. In practice we operate di-
rectly on D since it is readily represented as a 3D array.
D can be thought of as the 3D analogy to a 2D image: each
element represents the density (resp. pixel intensity) in a re-
gion of space. We can apply 3D convolutions to D in much
the same way as for 2D images.

2.2. Density Scale Space

2D detectors often construct a scale space to enable fea-
ture detection at a range of scales. This is achieved by con-
volving the image with Gaussian kernels of increasing ra-
dius, resulting in an image pyramid. We apply a similar
concept to search the density map D over a range of scales.
We convolve D with a series of 3D Gaussian kernels to con-
struct a pyramid of density maps, with each layer represent-
ing the scale σ = kσ′ where σ′ is the scale of the layer im-
mediately below. For efficiency we downsample the density
map by a factor of 2 when the scale reaches 2 (and simul-
taneously reduce the variance of the Gaussian kernel by a
factor of 2). This bounds the size of the convolution kernels
and hence leads to a large performance improvement.

Let L(x, y, z;σ) be a scale space for D:

L(x, y, z;σ) = (D ⊗ g(σ))(x, y, z)

where g(σ) is a 3D Gaussian with variance σ:

g(x, y, z;σ) = exp
(−x2 − y2 − z2

2σ2

)
(Note that we have omitted the normalisation constant.)

The number of downsampling operations (i.e. the num-
ber of octaves), and the number of scales we generate be-
tween downsampling (i.e. the number of layers per octave)
are user-specified parameters.

2.3. Selecting Interest Points

Interest points must be well localised in all three spa-
tial dimensions in order to be repeatable. We implement
this in ThrIFT by choosing points for which all three prin-
cipal curvatures are large. Such points will represent signif-
icant extrema in the density function along all three direc-
tions, which will lead to the interest point being detected in
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the same position when the scene is viewed under different
viewpoint or lighting conditions.

We use the determinant of the 3 × 3 Hessian matrix to
find such points because it can be computed efficiently and
accurately, and is defined for arbitrary scale. Given a point
x = (x, y, z) and a scale σ, the Hessian at (x, σ) is defined
as:

H(x, σ) =

Lxx(x, σ) Lxy(x, σ) Lxz(x, σ)
Lyx(x, σ) Lyy(x, σ) Lyz(x, σ)
Lzx(x, σ) Lzy(x, σ) Lzz(x, σ)


where

Lxx(x, σ) =
∂2

∂x2
L(x, σ)

is the second partial derivative of L in the x direction, and
similarly for the other partial derivatives. In practice we
compute the terms in the Hessian by direct convolution of
D with Gaussian second partial derivatives:

Lxx = D ⊗ ∂2

∂x2
g(σ)

and similarly for the other partial derivatives. This avoids
constructing the scale space and computing the terms in the
Hessian as separate operations.

In our implementation we chose to compute exact con-
volutions using separable kernels (the alternative would be
to approximate the kernels with box filters as in SURF). In
practice we found that we could use relatively small density
maps without loss of performance, and hence the extra ef-
ficiency of box filters was unnecessary. Furthermore, using
exact convolutions allows us to sample at any desired fre-
quency in the scale domain, which makes it unnecessary to
interpolate the location of interest points later in the detec-
tion process.

We compute |Det(H)| at each point in the scale space.
To eliminate weak responses we apply a constant threshold
T . Next we apply non maximal suppression within a 3×3×
3 × 3 window. The remaining responses are local maxima
of |Det(H)|, and these are exported as interest points.

In SIFT responses with two principal curvatures of dif-
ferent sign are eliminated, since such points represent sad-
dles in the intensity function. We allow such points be-
cause in the 3D setting saddles may represent useful interest
points.

We could now expand |Det(H)| about each interest
point using the Taylor series, which would allow us to fur-
ther localise the interest points, as in SIFT and SURF. How-
ever, in our approach we sample regularly in the spatial and
scale domains, and we found in practice that further locali-
sation was unnecessary.

The ThrIFT detector is summarised by:

Interest(X ) = arglocalmax
(x,σ)

|Det(H(x, σ))|

3. The 3D descriptor

The success of the descriptors used in SIFT and SURF
have been partially attributed to the use of image gradients
as the basis for describing image patches. Image gradients
capture the dominant orientation of blocks of pixels, and are
robust to changes in viewpoint and illumination.

ThrIFT also uses orientation information as the basis for
its descriptor. In the case of range data, the dominant orien-
tation at a point is the direction of the surface normal at that
point. Since we do not have explicit surface normal infor-
mation we approximate it by fitting a least-squares plane to
the points in a sphere centred at the point.

We may think of the surface normal at a point as the
principal direction of the density map at that point. In this
sense, the surface normal is a direct generalisation of the
gradient orientation used in SIFT. Furthermore, the three
components of the surface normal vector correspond to a
generalisation of the dx and dy image gradients used in the
SURF descriptor.

There is a further advantage to using surface normal in-
formation that is specific to range data. In real range data,
the density of points on a surface is determined by the view-
point of the camera or range finder. A surface close to the
viewpoint will by sampled more densely than the same sur-
face further from the viewpoint, and similarly a surface that
is normal to the viewpoint will be sampled more densely
than the same surface oblique to the viewpoint (see Figure
1). In fact, as an object rotates, the relative sampling den-
sity of its surfaces will change significantly, as each surface
changes its orientation with respect to the viewpoint. Hence
it is important that our descriptor be robust to such changes
in sampling density.

In general the surface normal at a point is unaffected the
sampling density at that point. In practice we approximate
the surface normal with a least-squares plane, so changes
in sampling density will invariably have some effect on the
surface normal we compute. However, in the presence of
a significant number of points we can expect these errors
to cancel out, since all the points are situated on the same
underlying surface, and we assume that sensor noise is in-
dependent for each data point. This means that the nor-
mal to the least-squares plane will be largely unaffected by
changes in sampling density. Hence by using surface nor-
mals our descriptor becomes more robust to changes in sam-
pling density than other descriptors that use only location
information (e.g. spin images [3] and shape contexts [2]).

Our descriptor operates as follows. For each interest
point z = (x, σ) we define the support set:

Support(z) = {y ∈ X : ‖y − x‖ ≤ σ}
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Figure 1. Changes in sampling density result-
ing from changes in viewpoint

For each y ∈ Support(z) we define two windows:

W1 = {p ∈ X : ‖p− y‖ ≤ ωsmall}
W2 = {p ∈ X : ‖p− y‖ ≤ ωlarge}

Let P1 and P2 be the least-squares plane for W1 and W2

respectively, and let nsmall and nlarge be normal to P1 and
P2 respectively. These two vectors can be interpreted as the
principal curvatures of the density map at y for scale ωsmall

and ωlarge respectively. In our implementation ωsmall and
ωlarge are user-defined parameters, but they could also be
determined automatically from the detected scale σ. See
Figure 2 for a geometric interpretation of these entities.

The descriptor output for the interest point z is a his-
togram over the angle θ between nsmall and nlarge for each
y ∈ Support(z)

cos(θ) =
nsmall · nlarge

‖nsmall‖‖nlarge‖

The number of bins nb is a user-defined parameter. The
bins are spaced evenly between 0◦ and 90◦. The descriptor
output v contains the values from the bins of the histogram,
normalised such that ‖v‖ = 1. Hence nb also determines
the dimensionality of the final descriptor.

SIFT and SURF involve an orientation assignment step
that makes the rest of the process invariant to rotation. Be-
cause THRIFT uses only a comparison of surface normal

estimates at two scales, the descriptor is already invariant to
full 3D rotation, and there is no need for an explicit orienta-
tion assignment step.

Figure 2. The two least squares planes and
corresponding normals for one support point
on an example surface

4. Results

We evaluated ThrIFT using data acquired with a laser
range finder. Each data set contained approximately 500
million data points collected in a 360◦ sweep.

Since the primary goal of the detector is to be repeatable,
our first experiment tested the repeatability of our detector
in the presence of noise. We generated a density map from
the range data and then added independent Gaussian noise
to each density value. We ran the detector before and after
the addition of noise and recorded the number of interest
points that were detected in both cases as a percentage of
the total number of interest points. We used density maps
of size 100× 100× 100. Our detector generated 5 octaves,
each containing 4 layers. We used a threshold of 0.5. Only
those interest points that were detected at exactly the same
location and scale were classified as repeats.

Figure 3 shows the observed repeatability as a function
of noise. The results show a high level of repeatability. At
1% noise, our detector achieves a repeatability of 91.3%.
At 10% noise, which corresponds to less than 3 bits of pre-
cision, our detector repeatably detects over 50% of the in-
terest points at exactly the same location and scale. In the
context of extrapolating a partial model of a scene (which is
the intended application of ThrIFT) there will be many fea-
tures in the scene that could be matched. Detection of any
significant subset will be enough to extrapolate the model;
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hence these results show that ThrIFT is suitable for this ap-
plication.

We evaluated the performance of our descriptor on the
problem of detecting repeated structure in 3D scenes, since
that is the key information needed to extrapolate a partial
model. We used urban scenes containing buildings with re-
peated structure. For each scene we used the detector to
find a set of interest points. We then computed the descrip-
tor for each interest point and compared these with the de-
scriptor computed for a hand-picked reference region. We
isolated the 50 interest points with descriptors that most
closely matched that of the reference region, and recorded
how many of these corresponded to repetitions of the scene
structure at the reference region (correct matches). Match-
ing was performed using the Euclidean distance between
descriptors. Ground truth was established manually.

We used 10 bins for the histogram. We set ωsmall =
0.3σ and ωlarge = 0.8σ where σ is the radius of the refer-
ence region. Hence ωsmall and ωlarge were constant for all
interest points.

Table 1 shows the results of this experiment for three data
sets. Figure 5 shows the locations of the specific regions
that were matched to the reference point in each scene. The
results show that of the strongest 50 matches, over 80% in
each scene were correct identifications of repeated struc-
ture.

The first two test scenes, “Library-Sparse” and
“Windows-Sparse”, contained facades that were oblique to
the range finder, resulting in sparsely sampled surfaces (see
Figure 5). For these scenes ThrIFT was still able to achieve
an accuracy above 80%. The last scene, “Windows-Front”
contained a more densely sampled facade, which led to a
corresponding increase in accuracy (94%).

In this evaluation we considered each interest point and
descriptor independently. A more intelligent use of the
available data would be to consider the descriptors together
using some higher-level recognition system, which would
lead to better detection of repeated structure. For example,
we might look for many regularly-spaced matching descrip-
tors as evidence for repeated structure, or we might look for
repeated groups of descriptors.

We conducted our experiment without any such higher-
level integration of the information so that our results would
show the performance of ThrIFT alone. Since ThrIFT was
alone able to achieve such promising results, we can expect
good performance when we use ThrIFT as input to a higher-
level recognition system designed specifically for detecting
repeated structure.

5. Conclusion

In this paper we have presented ThrIFT, a system that
extracts and describes distinctive scene feature from range

Data set % Correct Matches
Library-Sparse 86%

Windows-Sparse 84%
Windows-Front 94%

Table 1. Out of the strongest 50 matches, the
percentage that were correct

Figure 3. Repeatability of the interest point
detector in the presence of noise.

data. We have justified our approach as a generalisation
of two successful 2D feature extraction systems, SIFT and
SURF.

We have shown the performance of our system by testing
it on a number of scenes acquired using a laser range finder.
Our results show that our detector exhibits high repeatabil-
ity, and that our descriptor can be used for identification of
repeated structure.

Future work will focus on more comprehensive evalua-
tions of ThrIFT. We will test the repeatability of the detec-
tor in the presence of viewpoint changes, and systematically
test the descriptor on a library of range data scans.
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Figure 4. Results from the detector. The spheres show the location and scale of all detected interest
points. Notice how interest points tend to occur in regions with high spatial gradients.
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Figure 5. Results from the descriptor. The blue sphere shows the location and scale of the reference
point. The green spheres show the locations of the best 50 matches. Even from an oblique viewpoint,
repeated structure is identified in the majority of cases. The data set names (for cross-reference with
Table 1) are (a) Library-Sparse; (b) Windows-Sparse; (c) Windows-Front.
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